Chapter 5

Capacitance and DC Circuits

5.1 Capacitors

A capacitor iz a svstem of fwo conductors that carries eguod and opposile
charges. A capacitor stores charge and energy in the form of electro-static feld.

We defline capacitance as

7
i 1—; Unit: Farad{F)
where
£ Charge on one plate
V' = Potential difference between the plates

Note: The C of a capacitor is a constent that depends only on its shape and
material,
1.e. If we imncrease V for o capacitor, we can inerease () stored

5.2 Calculating Capacitance

5.2.1 Parallel-Plate Capacitor
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d as E

Area of conducting
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(1) Recall from Chapter 3 note,

- [
T i
] 't'|:|.'!

(2) Recall rom Chapter 4 note.
i
AV =V, =-V_= - f E . d&

Again, notice that this integral is independent ol the path taken.
. We can take the path that is parallel to the £-feld.

AV f i
= [ E s

S

Y|
et
Lengih of path taken

Q

3 | 0= -2

Consider two concentric cylindrical wire
of innner and outer radin ryp and s re-
spectively. The length of the capacitor
s L where | < ry <& L.




5.2, CALCULATING CAPACITANCE a4

(1) Using Gauss’ Law. we determine that the E-field between the conductors
is {ef. Chapd note)

A, | 4

1, — e — m e

; o
ey T 2reg L

where A bs chiarge per unit length

(2)
iﬂ’_/ E - di

Again. we choose the path of integration so that d5 || 7 || E

: 4y S If‘? T
al= ,[.I Edr = dmepl J ¥
L
|.||-::—f-'|

= L

0= e = 2 s
AV o In{rafry)

5.2.3 Spherical Capacitor

| -I-Ir'.-
= For the space between the two conductors,
Ili_'_._'-ll".,
1
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5.3, CAPACITORS IN COMBINATION HE

5.3 Capacitors in Combination

(a) Capacitors in Parallel

¥
In this case, it’s the potenticl difference
S — V' = ¥, — Vi that 15 the same across the
e . .
Capacitor,
¥

BUT: Charge on cach capacitor diffcrent
Total charge @ = h + 0
OV + Vv
@ = (Ch+G)V
"'|_.v._r'

Equivalent capacibance

For capacitors in parallel: |l!f' =L + I:ﬂ

{b) Capacitors in Series

e i

I.?'

d

I"'r. L:.I Vi Lhe same.

'{JI I ¢ "_'-‘._«’l I'E‘ = :
1 I'he charge across capacilors are
od

BUT: Potential difference {(P.D.) across capacitors different

{
AV, = ¥V, -1.= —"] P.ID. across )
1
: . . Q@ :
AV = V—-W= e P.D. across €
-2

Potential difference

AV = VWV, —-W

= AV, + AW

i T 0

AV = Ol=—4—=)==
“{", [ G

where C i3 the Equivalent Capacitance

1 1 1
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5.4 Energy Storage in Capacitor

i+ ++++H n charging a capacitor, positfive charge
s being moved from the negafive plate

AV =< to the posifiee plate.
¢ = NEEDS WORK DONE!

Suppose we move charge dyg from —ve to +ve plate, change in potential energy
A7 = AV -dg = L dg
i

Suppose we keep putting in a total charge @ to the capacitor. the total potential

ERETRY
.Q q‘l
[J= /rﬂ.-’ - —
; Ju ’
. SR e | [R——
“ 30 3 S il

The energy stored in the capacitor is stored in the electric field between the
plates.

Mote : In a parallel-plate capacitor, the E-field 15 congtart between the plates.

We can consider the E-field energy

Total cnergy stored
Total volume with E-field

)

Ad
B

density u =

o =

Rectangular volume

Recall - sl
. )

E = —‘?‘:— = AV =FEd
[

S avy W"'i?

s 1 l.‘1|."1| "":h-“' . 1
.'r—E[—-r}—}lerf} ¥



5.4 ENERGY STORAGE IN CAPACITOR

b

I o

i --r,;,Ez Energy per ““”-."-"ﬂ']l.lmr!
2 of the electrostatic field
T

can be generally applicd

Example : Changing capacitance

*g

+
o

+

d

(1} Tsolated Capacitor:

Chearge on the capacitor plates remaing eonslont,
- Fr_|."l|. I.
M: i“l’ll't' e _::I lr\'.llrl

2d
L"I'I‘l'h'

o o '
2‘!-".:M
In pulling the plates apart, work done W = (1

‘-:'rlil H "i:'r'l:-.‘ul'd Jll?

Summary :
g = Q '
(V=2 = Vv = ¥ E
%F(.E’I = W= i L

(2) Capacitor connected to a battery:

FPote urtm! differcnee betwoeen capacitor plates remaims consfant.

I N, PR L
[ Far R 2 I::':ur |.|.ll'ﬁl.I T E |::-'.-_.|'||'.'_'=1'

T
- ald

—¥ —H

€2

E

2L7

In pulling the plates apart, work done by battery < 0

Summary
Q — Q2 ¢ — Cf2
L E - K2
i — i or — 12
¥ ¥
L L

@ K7,
a0 A

(E= %)
(U7 = u - vedume)



5.5. DIELECTRIC CONSTANT a7

5.5 Dielectric Constant

We first recall the case for a conductor being placed in an exfernal E-field £,

'EI:I
£ J: l In a conductor, charges are free to move
" A 4 . . inside so that the internal E-field E* set
; up by these charges
1* 4 s
————————— s0 that E-field inside conductor = 0.
E=0
o e e e e e e e o
! 1
Generally, for dielectric, the atoms and £
moleciles behave like a dipole in an E-field. @ =P
=y

Or. we can envision this so that in the absence of E-field, the direction of dipole
i the dielectric are randomly distributed.

@rﬁﬁ@




5.6. CAPACITOR WITH DIELECTRIC o8

The aligned dipoles will generate an mduced E-field B where |E'| < | Byl
We can obszerve the aligned dipoles in the form of induced surfoce charge

Dielectric Constant © When a dielectric is placed in an external E-field F,
the E-field inside a dielectric is mduced.
E-field in dielectric

. 1 .

|r"..' = h_-r .F'.-|:\.
K, = dielectric constant > 1

Example -

Vacimmn K.=1
FPorcelain K, = 6.5
Water .~ R
Ferfect conductor K, = oo
Adr M. = 1.0MM059

5.6 Capacitor with Dielectric

e

Again, the charge remains constant after dielectric is inserted.
- 1
BUT: Eow = i Eoid
[ &

Case 1 :

AV=FEd = A&Viw=1 AV
LT
(. . -
I::'I o A_‘z. == 'I:-r.ll'n- — -Fllnl'f:l'.lllr

For a parallel-plate capacitor with dielectric;

' WeepA

i 3




5.6. CAPACITOR WITH DIELECTRIC af

A4
We can also wnite 7= —  in general with

i
c= N, e (called permittivity of dielectric)

|Recall ¢y = Permittivity of free space)

{J?
Enerey stored [J = =<
& | TH
Vpews ===Uas < U

K.

Work done in mserting dielectric < 0

Case Il : Capacitor connected to a battery

IF IV

L L
—_—n H

g L]

Voltage across capacitor plates remmns constant after insertion of dielec-
tric.

In both scenarios, the E-ficld inside capacitor remainsg constant

[+ B =Vjd)

BUT: How can E-fioeld remain constant”
NSW By having extra charge on capacitor plates,

Recall: For conductors,
- T
E = — {Chapter 3 naote)
£i
i

sl £pA

[ir = charge per unit area = Q27A4)

After mnsertion of diclectrie:

E ¢
Pt 9
i, Koepd
But E-field remains constant!
g
H=F = Q e i

h-lul!'".“‘ F|_|."1

= Q'=K.0 >0
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& - KO
U — K

oo Capacitor O = QfV =
Energy stored [/ =1cCWV? -
(e B o la)

| - Work done to insert dielectric = 0 |

5.7 Gauss’ Law in Dielectric

The Gauss” Law we've learned is applicable in vecinm endy. Let’s use the capac-
itor as an example to examine Gauss' Law in dielectric,

i aassian saalacs 3

s suekace 2 e

Free charge

on plates =0 +
Indu:t:ed charg& 0 -
om dielectric
Granss” Law Ganuss” Law:
?gﬂd.i'-— ?Sér.;mﬁ'*?
d= Q 1y S Q Qr i
=+ Eﬂ:f;'?_“j (1} E = = (2)
However, we define E = h;f’ {3)
. e 9 g
Fromm (1), (2}, (3) FoiehA GA R
. & 1
Induced charge density &' = R -:rl[l - h’_} < 4T
where & is free charge density.
Hecall Gauss' Law in Dhelectric:
4 ?g E.dd = & oy
g
T ). T
E-field in dielectric free charge induced charge



=

5.8, OHM'S LAW AND RESISTANCE 61

pe s |

= r.-,?gﬁf-nu. t’,}l—n’,}'[l—rl

= fngg B dA = i
by

K,

£n i dielectebe

Mote

- : . : ‘0 .
(1} This goes back to the Gauss™ Law in vacuum with F = — for dielectric
by

(2} Only free charges need to be considered, even for dielectric where there

are induced charges
lﬁ 'r'-i N I'F.'{ = E
dg ¢

where  F s E-held m o delectne, & = Koep s Permitbivity

[3) Another way to write:

Energy stored with dielectric:

e T 1 v
[otal energy stored: U % Ve

F'in-l.ﬂ:, i
)

With dielectric, recall C =

V=FEd

o Emergy stored per anit volume:

TR
i, i E_h..rnb

ﬁ't]:“t Welieleviren H.'?rr LT

More encrgy is stored por unit volume in diclectrie than in vacuum.

5.8 0Ohm's Law and Resistance

ELECTRIC CURRENT i defined as the flow of electric charge through a
cross-sectional area,
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i Unit: Ampere (A)
-:.!T = /sroond

Convention :
(1) Direction of current 15 the direction of flow of posidive charge.

(2} Current is NOT a vector, but the current density is a vector

g = charge flow per unit time per unit area

i= [;,T-r;.{

Dirift Velocity

. ; - (P T
Consider a eurrent @ Howing, through Ly

"'.'-_li.-!:"p s e T
a cross-sectional area A e

o

In time At. total charges passing through sesment:

AQ =g A(ViAst) n

Volume of charge
passing throwgh

where g 18 charge of the current cartier,  nois density of charge carner
per unit volume

; . Aag
Current: |[i = s = ngAuy

Current Density: _,l" = TuJti4

Mote : For metal, the charee carriers are the free electrons inside.

j = —nety for metals
Insicle metals. § and & are in oppesife direction.
I

We define a general property, conductivity (o), of a material as;

j=okF




5.8, OHM'S LAW AND RESISTANCE Li%

Note : In general. o is NOT a constant number. but rather a funciion of posifaon

and applied E-field.
C e . 1
A more commonly used property, resistivity (g}, is defined az o= pe

E=pj
Uit of p : Ohm-meter {Thm)
where (Ohm {11) = Volt/ Ampere
OHM’S LAW:

Ohmic materials have resistivity that are independent of the applied electric field.
i.e. metals (in not too high E-field)

Example -
— L T
Consider a resistor [ohmic material) of i—» . J—i
length L and cross-sectional area 4. | AP

A

Electric field mside conductor

ATE
AV fE_-rFs' E-LL = E é-;—

: oo
Current density: § = —1

I
po= =
J
AV 1
s BN — ==
f L 1A
AV L
—_—= = =
L

where B is the resistance of the conductor.

Mote: AV = K is NOT a statement of Ohm's Law. It's just & definition for
Tesistanoe,



3.9, DC CIRCUITS G4

J:_,h, r-_n
M in-lﬂpcndcm afl B d-,:p.,:rnjcnl at
applicd AV applied AF
AV AV
Ohmic material Mon-ohmic material
tRead Chap, 29-4 of Halliday Yal 2]
ENERGY IN CURRENT:
: ——*§

kgﬂﬂt]ﬂmg 3 charge A enters -y @ 2

with potemtial Vi and leaves with

potential 14 — A} —
! i

Potential energy lost in the wire:
Al = AQV—-AQV,
AT AQV; — V)
Rate of energy lost per unit time
AU _ AQ
At T At

5 =
By AV | ower dissipated
in_conductor

(Vi — W)

Joule's heating

Ay

For a resistor B, P={R =

5.9 DC Circuits

A battery i a device that supplics electrical energy to maintain & current o a
Circiif.,

[n moving from point 1 to 2, elec- (8 » (301

tric  potential  energy  inerease by - _I I+ i

AUl = AQ(V; — 1)) = Work done by £ ¥ | g
] &

Define £ = Work done/charge = V5 — 1)



5.9. DC CIRCUITS

Example -

.
+
rT = __|___ E l i
b’ d
e
1_.“ = 1"; - 11 frp ; -
2 : assuming' ' perfect conducting wires.
W = W
By Definition: V. -1V, = iR
Ve = 14 £
&
E=ifl = i=—
I I R

Also. we have assmed'® zero resistance inside battery.

Resistance in combination

| remans  conslanl

I-I R. 1- R: P:.

Potential differece (PLID.)

Vi — W (Vo — Vo) + (V. — W)
= 1R +1H;
Equivalent Resistance
R=PR;+ Rs for resistors in series

= E | R for resistors in parallel




5.9. DC CIRCUITS

Example -
—
e Nl Y |
I
r § ' For real battery, there is an
i il 2 R  internal resistance that
i we cannot lenore,
TR ¢
. —
E = #{R+r)
£
H+tr

Joule's heatimg in resistor 7

P = i [P.D. across resistor K)

= i f

P

g

Question: What is the value of R to obtain marimum Jonle's heating”

Answer: We want to find R to marimize P

i £ E* 2R
iR R+ (R+rp
P £2
A —_—— i ) — Fuks
Setting w5 =0 TETE [(R+v)—2R]=0
= r—HR=1
= =
P
¥: ot o
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ANALYSIS OF COMPLEX CIRCUITS:

KIRCHOFF'S LAWS:

(1) First Law {Junction Rule):
Total corrent entering a junction equal to the total current leaving the
junction.

Conzservatian af charge

(2) Secomd Law {Loop Rule):

The snm of potential difforences around a complote cireait loop s zero.

Convention

(i)

—
V. F,
Vo= 1, = Potential difference = =i f

i.e. Potential drops across resistors

(11}

V=1, = Potomtial difference = +&

i.e. Potential rises across the negative plate of the battery.

Example



5.9. DC CIRCUITS

- &,
Find i.4,.i
28— 7 1282043
. - R k
IIT &, % N
WA - £
&
By junction rule:
b= dp 41y (5.1)
By loop rule:
]JI:]:}J.} A = EEU == AJR — ig i+ Eu - R=1 |:rq.'l.2:|
Loop C = 26— A-LR3B--uR-i /=0 [5.4)
BUT: (5.4) = (6.2) + (5.3)
Cremeral mule: Need only 3 equations for 3 current
iy =iz + iy (5.1}
:T-E”. E'I!L H H;:_Ir'i.: ] [_.FL-ZJ'I
-2+ iR - 2i:R =10 (B3]
Substitute (5.1} into (5.2)
3E||- =— '2[-;!: - J:{}H —_— -'glr'-l" =
= 3 —3iaR—2iR=0 (B.4)
Subtract (5.3) from {34}, i.e. {5.4}—(5.3)

an = {—Ef:u} = :ii:-,zH = -'-;.g.lrf =l

3 |z
T
Substitute iy into [5.3)
5 -lf'-"
26, + [T:' ﬁ}& %R =10
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Substitute iy, i3 into [5.1) :

Note: A negafive current means that it is Howing in opposite direction rom the
one assnmed.

5.10 RC Circuits

(A) Charging a capacitor with battery:

™ &
£
' g — B ),
R i . R
| | = |+
| | = |+

C C ==

Using the loop rule:

¢
H — iR - —"] =0
Ry i
P e il
across B P.I».
across L

Note: Dircction of @ is chosen so that the current reprosents the rate at
which the charge on the capacitor iz mmereasing.

-
=R @ _Q st order
ot o differential sgn
dtg ol
EC-Q  RC

Integrate both sides and use the indtial condition:
E=10, Q on capacitor =0

¢ 4O _f’ et
G T
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~In(eC - Q)" - ﬁ,r,
= —In(EC — ) |"[Eﬂr]—'r;'{7-
= In( lﬁ'.} - r;r:‘
. ﬁ e
o % L gbRE

= [Q(t) = EC{1 — e ~H"E)

Note: (1) Att=0.0Q(t=0)=£C{1-1)=0

(2} Ast— oo, QFf —mo)=EC—10)=EC
= Final charge on capacitor [(Qy)
(3} Current:

)
1 — "
at
o —t ) R
EC [Ef}ﬂ
_”:'I[:I = %F—i.".f:l‘:'
: £ i
=0 = i Initial current = i
ift —oc) = 0
G‘ Il"l
r-——-—--= e it
il
.rr — .r.ir

(4) At time = 0. the capacitor acts like shorf circuwt when there is
zere charge on the capacifor,

(G} As time — oo, the capacitor is fiully charged and current = 0, it
acts like a open corouif,

L.

— i)
| |
|

— | 3




5.10. RC CIRCUITS il

(6} 7. = RC is called the time constant. [ts the time it takes for
the charge to reach (1 — 1) Qp = 0,630,

(B) Discharging a charged capacitor:

e

+ EL

-0, ]

+Q_ il
a1 R

R—-—!l-

MNote: Direction of § is chosen so that the current represents the rate at
whach the charge on the capacitor is decreasing.

__4Q
Tt
Losop Rule:
V.—iR=10
oo
== 'I;_';'; + r_ﬂr =1
a1
dt "

Integrate both sides and wse the initial condition;
=0, Q oncapacitor = Qy

j"-? dC) T
u-" {,? E-F 1]

f
— ]J.ll'."',:iI lll{:;ru - E

Ej __t
O, RC
9 — iR

G

= Qit) = Que ™
o _ome

RC
1

(Ate=0) = f[r=u]=ﬁ-%

e

Initial LT} across capacitor

. W
tp = —

R

= iuI:
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-
It

o

At t=RC=7

>

0

. 1
it = RC) = =y = 0370,
"



Chapter 6

Magnetic Force

6.1 Magnetic Field

For stationary charges, they experienced an electric force in an electric field.
For moving charges, they experienced a magnetic force in 0 magnetic field.

Mathematically, f'=;._- -r,u"j (electric foree)
Fr=gf = B (magnetic foree)

Dhirection of the magnetic force determimed from right hand rile.

Z s
Fﬂ'
Ja.+:.-.ﬂ' I«.-ﬂ.ﬂ'
=3 | Tl = ] =i
x oo B tay X v l B "=y
Fa

Magnetic feld B : Unit = Tesla ('T)
1T = 1C moving at 1m/s experiencing 1IN
Common Unit: 1 Gauss (G) = 107T = magnetic field on earth’s surface

Example: What's the force on a 0.1C charge moving at velocity @ = {lE]_F
20&)ms~ ! in a magnetic field B = (=3 + 4&) = 10T

F (X B



6.1. MAGNETIC FIELD T4

+0.1 (105 = 20k) % (=31 + 4k) x 107'N
= 1077 (—30- —k + 401 + 605 + O)N
Effects of magnetic field s usuallv guite small.
F = gz B
|F | = gquBsind,  where # is the angle between 7 and B
Magnetic force is mozimum when @ = 90° {i.e. 07 1 E’]I
Magnetic force is mangmum (0) when # = 0°, 1807 {i.e. | &)
Graphical representation of B-field: Magnetic field lines
Compared with Electric field lines:
Similar characteristics -
(1) Direction of E-field /B-field indicated by fangent of the feld lines,
(2) Magnitude of E-field /B-field indicated by density of the feld lines.
Differeces -

(1} Fe || E-field lines; Fp L B-field lines

(2} E-field line begins at positive charge and ends at negative charge; B-
field line forms a closed loop

Example : Chapi5, Pei03 Halliday

\| A

'VI.I:I|:'

Mote: lsolated magnetic monopoles do not exist.




6.2 MOTION OF A POINT CHARGE IN MAGNETIC FIELD ia

6.2 DMotion of A Point Charge in Magnetic Field

Since F“[j' L o, theretore B-tield only changes the direction of the velocity but not
its magnifude.

B

Generally, Fp =g x B=quv, B, :
We only need to consider the motion
component L to B-field

X, A e *,
LY
We have circalar melion. Magnetic I < i
foree provides the centripetal foree om the 5 '. * " "
moving charge particles. "x A
N -
oy -
b Sl 3 o
i
.F'rf = m—
r
el
i
[glvB = m—
=
Frel
'il' = ——_—
lg| 2
where v 18 radius of circular motion.
Time for moving around one orhit:
29 2 ;
"= — = —— | Cyelotron Period
" i3

(1) Independent of ¢ {non-relativistic)

(2) Use it to measure ey

T
VA

CGenerally, charged particles with con-
stant velocity moves in helix in the pres-
ence of constant. B-field.

o
T




6.3. HALL EFFECT [

MNote :
(1} D-field does NO work on particles.
(2} B-feld does NOT change K.E. of particles.

Particle Motion in Presence of E-field & B-field:

F r,n':._I b gU = B Lorentz Force

Special Case : E L B

FaLbinte 4+ + 4+ 4+ + +H

¢« W ® W l When [Fe| = |55
oo " b o E qE = quiB
" " : == = £
e e A

For charged particles moving at v = £/ B, thoy will pass through the
erossed K and B fields without vertical displacement,
= wvelocity selector
Applications :
o Cyclotron (Lawrence & Livingston 19:54)
& Measuring o /m for clectrons [Thomson 1897)

s Muass Spectrometer (Aston 19179)

6.3 Hall Effect

Charges travelling in a conducting wire will be pushed to one side of the wire by
the erternal magnetic field, This separation of charge in the wire is called the

Hall Effect.

_I:_"-t.':.-r"u-..l
| —— W —= 8 -frela | ——
| . ot |
", - x e " b
3 o

I g ! o i f Y y E

ETTTTTYTY Jv_
,.«_1_}1__ W V€

FPositive current carrier Megative current carrier



6.3. HALL EFFECT T

The separation will stop when Fg experienced by the current carvier is balanced
by the force Fy cansed by the E-field set up by the separated charges,

* > " 4 s ot b "
b . e s
7, Fy

. !
—— I % .l'.ﬂl _Jr:“ "" —_— \_:# %-ﬁ |—
E, F
e T = ot e e
W o E ™, = o b b

AV Hall Voltage
= Potential diference across the conducting strip

Al
E-field from separated charges: By = 'I_F’H_

where WV = width of conducting strip

[n eguilibrinm: qﬁfu o TR A = 0. where iy 15 drift velocity

AVy
— =it
I !
[Recall trom Chapter 5.
i = ng Ay

where 518 density of charge carrier,
A is cross-sectional area = width x thicknes = W . ¢

AV L
t = — B
H gl
— i To sdetermine density
at AV of charge carmiers

auppose we determine n for a particular metal (. g = ), then we can megsure
B-field strength by measuring the Hall voltage

ret

H=— ﬂh]rr”
¢




6.4 MAGNETIC FORCE ON CURRENTS is

6.4 DMagnetic Force on Currents

Current. = many charges moving together

" L o
Congider a wire segment, length L, *— o, &,
carrying current ¢ in a magnetic feld, 84— $— ;
! — |
_,‘]I
Total magnetic force = [ g 5 )- nAlL

force on ope Vodal number of
charge carrier charge carmier
Hecall 1 = ngey A

Magnetic force on current F =1L = B

where L = Vector of which: |L| = length of current segment; direction =
direction of current

For an infinitesimal wire segment !

dF —idl » B

Example 1: Force on a gemicirele current loop

dl = Infinitesimal
arc length element L G
dl = KaW
dF thBdd i

By symmotry arsument, wo only need bo consider vertical forces, o F - sin ff
"
Net foree F [ il sin #
i

= Ha.rff sin 0.0
il
F'o= 2%RE  (downward)



6.4 MAGNETIC FORCE ON CURRENTS (i,

Method 2: Write di in ;,l components

dl’ —efl sin 1 + ol cos 6
= Rdf{—sinf +cas#y)
- Bk {into the page)
= idlx B
= —iRBsinfdf) —iREcosh

L B
|

P [ AF
of L

" —:‘RBU ﬁinwﬁj+[ .:mﬂnlr?i|
¥ il
= -2iRR;

Example 2: Current loop in B-field

N \"\\{ View from top
L >
al i B
‘1
L.
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For sogment2:

Fy = thB (M7 + ) = b B oos if [pointing downward)

For segment4:

Fy = ibBsin[90° — #) = ihB cos ! ([pointing upward )



